Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;87(2):484-90.
doi: 10.1152/jappl.1999.87.2.484.

Changes in respiratory timing induced by hypercapnia in maturing rats

Affiliations
Free article

Changes in respiratory timing induced by hypercapnia in maturing rats

J M Abu-Shaweesh et al. J Appl Physiol (1985). 1999 Aug.
Free article

Abstract

Premature infants respond to hypercapnia by an attenuated ventilatory response that is characterized by a decrease in respiratory frequency. We hypothesized that this impaired hypercapnic ventilatory response is of central origin and is mediated via gamma-aminobutyric acid-ergic (GABAergic) pathways. We therefore studied two groups of maturing Sprague-Dawley rats: unrestrained rats in a whole body plethysmograph at four postnatal ages (5, 16-17, 22-23, and 41-42 days); and ventilated, decerebrate, vagotomized, paralyzed rats in which phrenic nerve responses to hypercapnia were measured at 4-6 and 37-39 days of age. In the unrestrained group, the increase in minute ventilation induced by hypercapnia was significantly lower at 5 days vs. beyond 16 days. Although there was an increase in tidal volume at all ages, frequency decreased significantly from baseline at 5 days, whereas it increased significantly at 16-17, 22-23, and 41-42 days. The decrease in frequency at 5 days of age was mainly due to a significant prolongation in expiratory duration (TE). In the ventilated group, hypercapnia also caused prolongation in TE at 4-6 days but not at 37-39 days of age. Intravenous administration of bicuculline (GABA(A)-receptor blocker) abolished the prolongation of TE in response to hypercapnia in the newborn rats. We conclude that newborn rat pups exhibit a characteristic ventilatory response to CO(2) expressed as a centrally mediated prolongation of TE that appears to be mediated by GABAergic mechanisms.

PubMed Disclaimer

Publication types

LinkOut - more resources