Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;82(2):718-29.
doi: 10.1152/jn.1999.82.2.718.

Effects of metabotropic glutamate receptor activation in auditory thalamus

Affiliations
Free article

Effects of metabotropic glutamate receptor activation in auditory thalamus

F Tennigkeit et al. J Neurophysiol. 1999 Aug.
Free article

Abstract

Metabotropic glutamate receptors (mGluRs) are expressed predominantly in dendritic regions of neurons of auditory thalamus. We studied the effects of mGluR activation in neurons of the ventral partition of medial geniculate body (MGBv) using whole cell current- and voltage-clamp recordings in brain slices. Bath application of the mGluR-agonist, 1S,3R-1-aminocyclopentan-1,3-dicarboxylic acid or 1S,3R-ACPD (5-100 microM), depolarized MGBv neurons (n = 67), changing evoked response patterns from bursts to tonic firing as well as frequency responses from resonance ( approximately 1 Hz) to low-pass filter characteristics. The depolarization was resistant to Na(+)-channel blockade with tetrodotoxin (TTX; 300 nM) and Ca(2+)-channel blockade with Cd(2+) (0.1 mM). The application of 1S, 3R-ACPD did not change input conductance and produced an inward current (I(ACPD)) with an average amplitude of 84.2 +/- 5.3 pA (at -70 mV, n = 22). The application of the mGluR antagonist, (RS)-alpha-methyl-4-carboxyphenylglycine (0.5 mM), reversibly blocked the depolarization or I(ACPD). During intracellular application of guanosine 5'-O-(3-thiotriphosphate) from the recording electrode, bath application of 1S,3R-ACPD irreversibly activated a large amplitude I(ACPD). During intracellular application of guanosine 5'-O-(2-thiodiphosphate), application of 1S, 3R-ACPD evoked only a small I(ACPD). These results implicate G proteins in mediation of the 1S,3R-ACPD response. A reduction of external [Na(+)] from 150 to 26 mM decreased I(ACPD) to 32.8 +/- 10. 3% of control. Internal applications of a Ca(2+) chelator, 1, 2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 10 mM), suppressed I(ACPD), implying a contribution of a Ca(2+) signal or Na(+)/Ca(2+) exchange. However, partial replacement of Na(+) with Li(+) (50 mM) did not significantly change I(ACPD). Therefore it seemed less likely that a Na(+)/Ca(2+) exchange current was a major participant in the response. A reduction of extracellular [K(+)] from 5.25 to 2.5 mM or external Ba(2+) (0.5 mM) or Cs(+) (2 mM) did not significantly change I(ACPD) between -40 and -85 mV. Below -85 mV, 1S,3R-ACPD application reversibly attenuated an inward rectification, displayed by 11 of 20 neurons. Blockade of an inwardly rectifying K(+) current with Ba(2+) (1 mM) or Cs(+) (2-3 mM) occluded the attenuation. In the range positive to -40 mV, 1S, 3R-ACPD application activated an outward current which Cs(+) blocked; this unmasked a voltage dependence of the inward I(ACPD) with a maximum amplitude at approximately -30 mV. The I(ACPD) properties are consistent with mGluR expression as a TTX-resistant, persistent Na(+) current in the dendritic periphery. We suggest that mGluR activation changes the behavior of MGBv neurons by three mechanisms: activation of a Na(+)-dependent inward current; activation of an outward current in a depolarized range; and inhibition of the inward rectifier, I(KIR). These mechanisms differ from previously reported mGluR effects in the thalamus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources