Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999;9(2):159-73.
doi: 10.1615/critreveukargeneexpr.v9.i2.30.

Multipotential cells in the bone marrow stroma: regulation in the context of organ physiology

Affiliations
Review

Multipotential cells in the bone marrow stroma: regulation in the context of organ physiology

P Bianco et al. Crit Rev Eukaryot Gene Expr. 1999.

Abstract

Multipotential (osteogenic, adipogenic, chondrogenic, and myelosupportive) cells associated with the bone marrow stroma are revealed by in vitro or in vivo differentiation assays. If considered in the context of development, growth, and adaptive changes of bone as an organ, the hierarchical organization, histophysiology, and biological significance of the so-called "stromal system" appear distinct from those predicted from the commonly used analogy with the hematopoietic system, with which the stromal system and its putative "stem" cell are usually compared. The plasticity of differentiated phenotypes and the emergence of individual lineages in a defined temporal succession throughout development and postnatal life reflect the role of the multipotential cells in the stromal system in tissue adaptation and growth, rather than in cell consumption and replacement. This makes the stromal system and its progenitors an interesting paradigm of the biology of an individual cell's flexibility in complex organisms.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources