Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis
- PMID: 10446501
- DOI: 10.1016/s0079-6107(98)00058-3
Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis
Abstract
This review gives an overview about the structural organisation of different evolutionary lines of all enzymes capable of efficient dismutation of hydrogen peroxide. Major potential applications in biotechnology and clinical medicine justify further investigations. According to structural and functional similarities catalases can be divided in three subgroups. Typical catalases are homotetrameric haem proteins. The three-dimensional structure of six representatives has been resolved to atomic resolution. The central core of each subunit reveals a characteristic "catalase fold", extremely well conserved among this group. In the native tetramer structure pairs of subunits tightly interact via exchange of their N-terminal arms. This pseudo-knot structures implies a highly ordered assembly pathway. A minor subgroup ("large catalases") possesses an extra flavodoxin-like C-terminal domain. A > or = 25 A long channel leads from the enzyme surface to the deeply buried active site. It enables rapid and selective diffusion of the substrates to the active center. In several catalases NADPH is tightly bound close to the surface. This cofactor may prevent and reverse the formation of compound II, an inactive reaction intermediate. Bifunctional catalase-peroxidase are haem proteins which probably arose via gene duplication of an ancestral peroxidase gene. No detailed structural information is currently available. Even less is know about manganese catalases. Their di-manganese reaction centers may be evolutionary.
Similar articles
-
Fungal catalases: function, phylogenetic origin and structure.Arch Biochem Biophys. 2012 Sep 15;525(2):170-80. doi: 10.1016/j.abb.2012.05.014. Epub 2012 Jun 12. Arch Biochem Biophys. 2012. PMID: 22698962 Review.
-
Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases.J Mol Evol. 1996 May;42(5):570-9. doi: 10.1007/BF02352287. J Mol Evol. 1996. PMID: 8662009
-
KatB, a cyanobacterial Mn-catalase with unique active site configuration: Implications for enzyme function.Free Radic Biol Med. 2016 Apr;93:118-29. doi: 10.1016/j.freeradbiomed.2016.01.022. Epub 2016 Jan 27. Free Radic Biol Med. 2016. PMID: 26826576
-
Evolution of catalases from bacteria to humans.Antioxid Redox Signal. 2008 Sep;10(9):1527-48. doi: 10.1089/ars.2008.2046. Antioxid Redox Signal. 2008. PMID: 18498226 Free PMC article. Review.
-
Role of the lateral channel in catalase HPII of Escherichia coli.Protein Sci. 1999 Mar;8(3):490-8. doi: 10.1110/ps.8.3.490. Protein Sci. 1999. PMID: 10091651 Free PMC article.
Cited by
-
Stress Physiology of Lactic Acid Bacteria.Microbiol Mol Biol Rev. 2016 Jul 27;80(3):837-90. doi: 10.1128/MMBR.00076-15. Print 2016 Sep. Microbiol Mol Biol Rev. 2016. PMID: 27466284 Free PMC article. Review.
-
Regulation of catalase-peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus.J Bacteriol. 2011 Apr;193(7):1734-44. doi: 10.1128/JB.01339-10. Epub 2011 Jan 21. J Bacteriol. 2011. PMID: 21257767 Free PMC article.
-
Influence of vitamin C diet supplementation on endogenous antioxidant defences during exhaustive exercise.Pflugers Arch. 2003 Sep;446(6):658-64. doi: 10.1007/s00424-003-1112-1. Epub 2003 Jul 12. Pflugers Arch. 2003. PMID: 12861413
-
Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics.Chem Rev. 2019 Jan 23;119(2):1456-1518. doi: 10.1021/acs.chemrev.8b00136. Epub 2018 Dec 4. Chem Rev. 2019. PMID: 30511833 Free PMC article. Review.
-
Inhibitory effects of a novel Val to Thr mutation on the distal heme of human catalase.Biochimie. 2014 Nov;106:180-3. doi: 10.1016/j.biochi.2014.07.021. Epub 2014 Jul 30. Biochimie. 2014. PMID: 25086217 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources