Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Aug;33(4):673-8.
doi: 10.1046/j.1365-2958.1999.01521.x.

beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins

Affiliations
Free article
Review

beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins

R Hakenbeck et al. Mol Microbiol. 1999 Aug.
Free article

Abstract

The beta-lactams are by far the most widely used and efficacious of all antibiotics. Over the past few decades, however, widespread resistance has evolved among most common pathogens. Streptococcus pneumoniae has become a paradigm for understanding the evolution of resistance mechanisms, the simplest of which, by far, is the production of beta-lactamases. As these enzymes are frequently plasmid encoded, resistance can readily be transmitted between bacteria. Despite the fact that pneumococci are naturally transformable organisms, no beta-lactamase-producing strain has yet been described. A much more complex resistance mechanism has evolved in S. pneumoniae that is mediated by a sophisticated restructuring of the targets of the beta-lactams, the penicillin-binding proteins (PBPs); however, this may not be the whole story. Recently, a third level of resistance mechanisms has been identified in laboratory mutants, wherein non-PBP genes are mutated and resistance development is accompanied by deficiency in genetic transformation. Two such non-PBP genes have been described: a putative glycosyltransferase, CpoA, and a histidine protein kinase, CiaH. We propose that these non-PBP genes are involved in the biosynthesis of cell wall components at a step prior to the biosynthetic functions of PBPs, and that the mutations selected during beta-lactam treatment counteract the effects caused by the inhibition of penicillin-binding proteins.

PubMed Disclaimer

Publication types

MeSH terms