Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999;9(2):101-11.

A fiber-optic measurement system of light scattering to evaluate embryo viability: model experiment using a latex sphere suspension and mouse embryos

Affiliations
  • PMID: 10450497
Comparative Study

A fiber-optic measurement system of light scattering to evaluate embryo viability: model experiment using a latex sphere suspension and mouse embryos

H Itoh et al. Front Med Biol Eng. 1999.

Abstract

In this study, we tested the efficacy of a fiber-optic light scattering system developed by us to measure mitochondrial size and particle density in embryos in order to establish a non-invasive method of evaluating human embryo viability for in vitro fertilization and embryo transfer. Particle size was determined by comparing the measured angular distribution of the light scattering intensity with that of the theoretical distribution using a 1.0 micron latex sphere suspension and mouse embryos. The measured light scattering pattern of the latex suspension was found to agree closely with the theoretically derived pattern. The measured light scattering pattern of the mouse embryo was similar to the calculated pattern of spheres, the diameter of which was equivalent to that of the mitochondria. Therefore, the measured light scattering is thought to be derived mainly from the mitochondria in the embryo. The relationship between light scattering intensity and latex particle density was also examined in order to estimate the detectable range of mitochondrial particle density. Since the detectable range of the particle density obtained in our study (1.4 x 10(6) - 1.4 x 10(11) particles/ml) was greater than the known mitochondrial particle density in human embryos (1.0 x 10(9) - 1.0 x 10(11) particles/ml), we believe that this mitochondrial particle density can be measured using our system. We concluded that it is possible to use our simple system as a non-invasive method for evaluating human embryo viability.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms