Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;40(6):1072-9.

Characterization of [18F]fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia

Affiliations
  • PMID: 10452326
Free article

Characterization of [18F]fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia

J S Rasey et al. J Nucl Med. 1999 Jun.
Free article

Abstract

Fluorinated derivatives of etanidazole are being explored as probes for tumor hypoxia. Our research group has synthesized [18F]fluoroetanidazole (FETA) and now reports the oxygen dependency of binding to cells in vitro, the biodistribution of the tracer in tumor-bearing mice and the analysis of metabolites in their plasma and urine.

Methods: Four cultured rodent cell lines (V79, 36B10, EMT6 and RIF1) were incubated with [18F]FETA for various times under graded O2 concentrations. We also compared the biodistributions of [18F]FETA and [18F]fluoromisonidazole (FMISO) at 2 and 4 h postinjection in C3H mice bearing KHTn tumors (130-430 mg). Reverse-phase high-performance liquid chromatography was used to distinguish metabolites from parent drugs in urine and plasma of mice injected with [18F]FETA or [18F]FMISO.

Results: In cells labeled in vitro, O2 levels of 600-1300 ppm inhibited binding by 50% relative to uptake under anoxic conditions (<10 ppm). These inhibitory values are not statistically different from those reported for [18F]FMISO in the same cell lines (700-1500 ppm). In the biodistribution studies, uptake in heart, intestine, kidney and tumor was similar for both tracers 4 h after injection, whereas retention of [18F]FETA in liver and lung was significantly lower. Less uptake of [18F]FETA in liver suggests that this nitroimidazole is metabolized less than [18F]FMISO. The brain-to-blood ratios indicate that [18F]FETA readily crosses the blood-brain barrier. High-performance liquid chromatography of urine demonstrated that 10% of [18F]FETA-derived activity was in metabolites at 2 h postinjection, with 15% in metabolites by 4 h; comparable values for [18F]FMISO were 36% and 57%, respectively.

Conclusion: We conclude from these data that [18F]FETA holds promise as a new hypoxia tracer in patients, having oxygen dependency of binding similar to [18F]FMISO in vitro and displaying less retention in liver and fewer metabolites in vivo.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources