Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999;46(1):1-21.

Mitochondria, oxidative stress, and antioxidant defences

Affiliations
  • PMID: 10453977
Review

Mitochondria, oxidative stress, and antioxidant defences

G Lenaz et al. Acta Biochim Pol. 1999.

Abstract

Mitochondria are strongly involved in production of reactive oxygen species, considered today as the main pathogenic agent of many diseases. A vicious circle of oxidative stress and damage to cellular structures can lead to either cell death by apoptosis or to a cellular energetic decline and ageing. The early involvement of mitochondria in apoptosis includes expression of pro-apoptotic factors, release of cytochrome c from the inter-membrane space and opening of the permeability transition pore: cytochrome c release appears to precede pore opening. The mitochondrial theory of ageing considers somatic mutations (deletions) of mitochondrial DNA induced by oxygen radicals as the primary cause of energy decline; experimentally, Complex I appears to be mostly affected. We have developed the Pasteur effect (enhancement of lactate production by mitochondrial inhibition) as a bio-marker of mitochondrial bioenergetics in human platelets, and found it to be decreased in aged individuals. Cells counteract oxidative stress by antioxidants; among lipophilic antioxidants coenzyme Q is the only one of endogenous biosynthesis; exogenous coenzyme Q, however, may protect cells from oxidative stress in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources