Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep;290(3):1409-16.

Biochemical and functional profile of a newly developed potent and isozyme-selective arginase inhibitor

Affiliations
  • PMID: 10454520

Biochemical and functional profile of a newly developed potent and isozyme-selective arginase inhibitor

R Baggio et al. J Pharmacol Exp Ther. 1999 Sep.

Abstract

An increase in arginase activity has been associated with the pathophysiology of a number of conditions, including an impairment in nonadrenergic and noncholinergic (NANC) nerve-mediated relaxation of the gastrointestinal smooth muscle. An arginase inhibitor may rectify this condition. We compared the effects of a newly designed arginase inhibitor, 2(S)-amino-6-boronohexanoic acid (ABH), with the currently available N(omega)-hydroxy-L-arginine (L-HO-Arg), on the NANC nerve-mediated internal anal sphincter (IAS) smooth-muscle relaxation and the arginase activity in the IAS and other tissues. Arginase caused an attenuation of the IAS smooth-muscle relaxations by NANC nerve stimulation that was restored by the arginase inhibitors. L-HO-Arg but not ABH caused dose-dependent and complete reversal of N(omega)-nitro-L-arginine-suppressed IAS relaxation that was similar to that seen with L-arginine. Both ABH and L-HO-Arg caused an augmentation of NANC nerve-mediated relaxation of the IAS. In the IAS, ABH was found to be approximately 250 times more potent than L-HO-Arg in inhibiting the arginase activity. L-HO-Arg was found to be 10 to 18 times more potent in inhibiting the arginase activity in the liver than in nonhepatic tissues. We conclude that arginase plays a significant role in the regulation of nitric oxide synthase-mediated NANC relaxation in the IAS. The advent of new and selective arginase inhibitors may play a significant role in the discrimination of arginase isozymes and have important pathophysiological and therapeutic implications in gastrointestinal motility disorders.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources