An electrogenic ionic pump derived from an ionotropic receptor: assessment of a candidate
- PMID: 10456230
- PMCID: PMC11545507
- DOI: 10.1023/a:1006944820946
An electrogenic ionic pump derived from an ionotropic receptor: assessment of a candidate
Abstract
1. Data obtained studying permeability characteristics of single Deiters' membranes in a microchamber system show that intracellular GABA can activate chloride in-->out passage with a GABAA pharmacology. 2. The overall data suggest the presence of a chloride extrusion pump in these neurons based on intracellular GABA activated chloride channels. 3. This conclusion takes up a previous theoretical suggestion that ionic channels could work as ionic pumps provided an energy input modifies the energy profile along the permeation path. 4. According to our quantitative evaluation, this pumping mechanism works with a low yield and along a cycle with a strongly asymmetric behavior, being far from equilibrium due to powerful "leakage" pathways for chloride in these neurons.
Similar articles
-
Unorthodox view of the functioning of a GABAA synapse.Cell Mol Neurobiol. 2002 Apr;22(2):121-37. doi: 10.1023/a:1019805603413. Cell Mol Neurobiol. 2002. PMID: 12363195 Free PMC article. Review.
-
Chloride permeation across the Deiters' neuron plasma membrane: activation by GABA on the membrane cytoplasmic side.Neuroscience. 1999;89(4):1391-9. doi: 10.1016/s0306-4522(98)00357-1. Neuroscience. 1999. PMID: 10362323
-
Stimulation of chloride in-->out permeation across the Deiters' neuron membrane by pentobarbital on the cytoplasmic side: additional evidence of GABA(A) receptors acting as chloride extrusion pumps.Neurochem Res. 1999 Mar;24(3):453-8. doi: 10.1023/a:1020954120894. Neurochem Res. 1999. PMID: 10215521
-
GABA and chloride permeate via the same channels across single plasma membranes microdissected from rabbit Deiters' vestibular neurones.Acta Physiol Scand. 2001 Oct;173(2):231-8. doi: 10.1046/j.1365-201X.2001.00878.x. Acta Physiol Scand. 2001. PMID: 11683681
-
gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia.J Neurochem. 2001 Apr;77(2):353-71. doi: 10.1046/j.1471-4159.2001.00274.x. J Neurochem. 2001. PMID: 11299298 Review.
Cited by
-
Intricacies of GABAA Receptor Function: The Critical Role of the β3 Subunit in Norm and Pathology.Int J Mol Sci. 2021 Feb 1;22(3):1457. doi: 10.3390/ijms22031457. Int J Mol Sci. 2021. PMID: 33535681 Free PMC article. Review.
-
Unorthodox view of the functioning of a GABAA synapse.Cell Mol Neurobiol. 2002 Apr;22(2):121-37. doi: 10.1023/a:1019805603413. Cell Mol Neurobiol. 2002. PMID: 12363195 Free PMC article. Review.
-
Massive Activation of GABAA Receptors: Rundown, Ionic and Neurodegenerative Consequences.Biomolecules. 2025 Jul 13;15(7):1003. doi: 10.3390/biom15071003. Biomolecules. 2025. PMID: 40723875 Free PMC article. Review.
References
-
- Akaike, T., Fanardjian, V. V., Ito, M., Kumada, M., and Nakajima, H. (1973a). Electrophysiological analysis of the vestibulospinal reflex pathway of rabbit. I. Classification of tract cells. Exp. Brain Res.17:477–496. - PubMed
-
- Akaike, T., Fanardjian, V. V., Ito, M., and Ohno, T. (1973b). Electrophysiological analysis of the vestibulospinal reflex pathway of rabbit. II. Synaptic actions upon spinal neurones. Exp. Brain Res.17:497–515. - PubMed
-
- Alberts, B., Bray, D., Lewis, L., Raff, M., and Watson, J. D. (eds.) (1994). Molecular Biology of the Cell, Garland, New York and London, Chap. 12.
-
- Ames, G. F. L., and Lecar, H. (1992). ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters. FASEB J.6:2660–2666. - PubMed
-
- Backus, K. H., Arigoni, M., Drescher, U., Scheurer, L., Malherbe, P., Mohler, H., and Benson, J. A. (1993). Stoichiometry of a recombinant GABAA receptor deduced from mutation induced rectification. Neuroreport5:285–288. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources