Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;70(2):101-6.
doi: 10.1159/000054464.

Growth hormone-releasing hormone and morphine attenuate growth hormone secretagogue-induced activation of the arcuate nucleus in the male rat

Affiliations

Growth hormone-releasing hormone and morphine attenuate growth hormone secretagogue-induced activation of the arcuate nucleus in the male rat

A R Bailey et al. Neuroendocrinology. 1999 Aug.

Abstract

Growth hormone secretagogues (GHS) administered systemically selectively induce growth hormone (GH) release from the pituitary and the expression of Fos protein in arcuate nucleus neurons. Both the control of GH release and the expression of the GHS receptor in the arcuate nucleus are thought to be regulated, at least in part, by the negative feedback actions of GH. In this study, we utilized the immunocytochemical detection of Fos protein to examine the effects of morphine- and GH-releasing hormone (GHRH)-induced GH release on the activation of arcuate nucleus neurons following GHS administration. Given alone, two structurally different GHS induced significant amounts of Fos-LI in the arcuate nucleus of male rats, suggesting activation of cells in this region. Prior administration of morphine or GHRH significantly reduced the number of Fos-positive cells in the arcuate nucleus of rats injected with either GHS, although when given together, morphine and GHRH did not produce a greater reduction in Fos expression than when given alone. In no case was there a complete reduction in Fos expression, indicating that some arcuate nucleus neurons are not subject to the feedback effects of endogenous GH. These results provide evidence that, in the male rat, GH can feedback to the hypothalamus, altering the responsiveness of neurons involved in the central response to GHS.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources