Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;70(2):172-5.

Photophysical studies of A2-E, putative precursor of lipofuscin, in human retinal pigment epithelial cells

Affiliations
  • PMID: 10461456

Photophysical studies of A2-E, putative precursor of lipofuscin, in human retinal pigment epithelial cells

R Cubeddu et al. Photochem Photobiol. 1999 Aug.

Abstract

With age, human retinal pigment epithelial cells accumulate lipofuscin that can absorb photons in the visible range leading to light-induced damage and impaired vision. A putative precursor of lipofuscin, 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E, 5E,7E- octatetraenyl]-1-(2-hydroxyethyl)-4-[4-methyl-6-(2,6,6-trimethyl-1 - cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium (A2-E), has recently been isolated and characterized from aged human retinal pigment epithelial cells. We have found that A2-E inhibits the growth of human retinal pigment epithelial cells at concentrations greater than 1 microM. Time-resolved fluorescence measurements of 1 microM A2-E in solution, performed under 413 nm excitation, showed that fluorescence wave forms integrated across the spectrum (450-600 nm) were best-fitted with three decay times in the nanosecond and subnanosecond time scale: 6.6, 1.9 and 0.33 ns. Untreated retinal pigment epithelial cells were characterized by three fluorescence lifetimes: 6.3, 1.7 and 0.35 ns. In retinal pigment epithelial cells treated with 1 microM A2-E, the fluorescence decay was significantly faster, with the marked presence (approximately equal to 30%) of a fourth short lifetime (0.12 ns). These fluorescence decay times for A2-E bound to human retinal pigment epithelial cells are similar to those of lipofuscin granules isolated from aged human retinal pigment epithelial cells. This similarity supports the hypothesis that A2-E is a precursor of lipofuscin and suggests that A2-E may play a role in the overall light damage associated with age-related retinal diseases.

PubMed Disclaimer

Publication types

LinkOut - more resources