Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep 3;274(36):25297-300.
doi: 10.1074/jbc.274.36.25297.

ADP-ribosylation factor 6 (ARF6) defines two insulin-regulated secretory pathways in adipocytes

Affiliations
Free article

ADP-ribosylation factor 6 (ARF6) defines two insulin-regulated secretory pathways in adipocytes

C Z Yang et al. J Biol Chem. .
Free article

Abstract

ADP-ribosylation factor 6 (ARF6) appears to play an essential role in the endocytic/recycling pathway in several cell types. To determine whether ARF6 is involved in insulin-regulated exocytosis, 3T3-L1 adipocytes were infected with recombinant adenovirus expressing wild-type ARF6 or an ARF6 dominant negative mutant (D125N) that encodes a protein with nucleotide specificity modified from guanine to xanthine. Overexpression of these ARF6 proteins affected neither basal nor insulin-regulated glucose uptake in 3T3-L1 adipocytes, nor did it affect the subcellular distribution of Glut1 or Glut4. In contrast, the secretion of adipsin, a serine protease specifically expressed in adipocytes, was increased by the expression of wild-type ARF6 and was inhibited by the expression of D125N. These results indicate a requirement for ARF6 in basal and insulin-regulated adipsin secretion but not in glucose transport. Our results suggest the existence of at least two distinct pathways that undergo insulin-stimulated exocytosis in 3T3-L1 adipocytes, one for adipsin release and one for glucose transporter translocation.

PubMed Disclaimer

Publication types

LinkOut - more resources