Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep 3;274(36):25877-82.
doi: 10.1074/jbc.274.36.25877.

The carboxyl-terminal domain of receptor-associated protein facilitates proper folding and trafficking of the very low density lipoprotein receptor by interaction with the three amino-terminal ligand-binding repeats of the receptor

Affiliations
Free article

The carboxyl-terminal domain of receptor-associated protein facilitates proper folding and trafficking of the very low density lipoprotein receptor by interaction with the three amino-terminal ligand-binding repeats of the receptor

R Savonen et al. J Biol Chem. .
Free article

Abstract

The 39-kDa receptor-associated protein (RAP) is a specialized antagonist that inhibits all known ligand interactions with receptors that belong to the low density lipoprotein (LDL) receptor gene family. Recent studies have demonstrated a role for RAP as a molecular chaperone for the LDL receptor-related protein during receptor folding and trafficking within the early secretory pathway. In the present study, we investigated a potential role for RAP as a chaperone for the very low density lipoprotein (VLDL) receptor, another member of the LDL receptor gene family. Using intracellular cross-linking techniques, we found that RAP is associated with newly synthesized VLDL receptor. In the absence of RAP co-expression, newly synthesized VLDL receptor exhibited slower trafficking along the early secretory pathway, most likely due to misfolding of the receptor. The role of RAP in the folding of the VLDL receptor was further studied using an anchor-free, soluble VLDL receptor. Metabolic pulse-chase labeling experiments showed that while only 3% of the soluble VLDL receptor was folded and secreted in the absence of RAP co-expression, over 50% of the soluble receptor was secreted in the presence of RAP co-expression. The functions of RAP in VLDL receptor folding and trafficking were mediated by its carboxyl-terminal repeat but not by the amino-terminal and central repeats. Using truncated VLDL receptor constructs, we identified the RAP-binding site within the first three ligand-binding repeats of the VLDL receptor. Thus, our present study demonstrates that RAP serves as a folding and trafficking chaperone for the VLDL receptor via interactions of its carboxyl-terminal repeat with the three amino-terminal ligand-binding repeats of the VLDL receptor.

PubMed Disclaimer

Publication types

LinkOut - more resources