Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep;140(9):4367-70.
doi: 10.1210/endo.140.9.7131.

Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells

Affiliations

Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells

L C Hofbauer et al. Endocrinology. 1999 Sep.

Abstract

The identity of the paracrine mediator(s) of the antiresorptive action of estrogen on bone cells is controversial. Osteoprotegerin (OPG) was recently identified as a soluble member of the tumor necrosis factor (TNF) receptor (TNF-R) superfamily that is secreted by osteoblast lineage cells and acts by binding to and neutralizing its cognate ligand, OPG-L, a required factor for osteoclastogenesis. OPG prevents bone loss when administered to ovariectomized rats, induces osteoporosis when ablated in knock-out mice, and induces osteopetrosis when overexpressed in transgenic mice. In conditionally immortalized, human osteoblastic hFOB/ER-3 and hFOB/ER-9 cell lines containing physiological concentrations of approximately 800 and approximately 8,000 functional estrogen receptors (ER)/nucleus, respectively, we found that 17beta-estradiol dose- and time-dependently increased OPG mRNA and protein levels to maximal levels of 370% and 320%, respectively (P < 0.001); co-treatment with the "pure" antiestrogen ICI 182,780 abrogated these effects completely. 17beta-Estradiol also dose-dependently increased OPG mRNA and protein levels in normal human osteoblasts with approximately 400 ER/nucleus by 60% and 73%, respectively. Thus, estrogen enhancement of OPG secretion by osteoblastic cells may play a major role in the antiresorptive action of estrogen on bone.

PubMed Disclaimer

Publication types

LinkOut - more resources