Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jan-Feb;2(6):267-78.
doi: 10.1101/lm.2.6.267.

7-Nitro indazole, a selective neuronal nitric oxide synthase inhibitor in vivo, impairs spatial learning in the rat

Affiliations

7-Nitro indazole, a selective neuronal nitric oxide synthase inhibitor in vivo, impairs spatial learning in the rat

C Hölscher et al. Learn Mem. 1996 Jan-Feb.

Abstract

Nitric oxide (NO) is an intercellular messenger that has been suggested to have a role in learning and memory formation. Previous studies with nonselective NO synthase inhibitors have produced contradictory results in learning experiments. However, these drugs also produced blood pressure changes, as NO is an endothelial-derived relaxing factor. A novel NO synthase inhibitor, 7-nitro indazole (7-NI), as a dose (30 mg/kg i.p.) shown previously to inhibit neuronal NO synthase by 85% without affecting blood pressure, produced amnesic effects both in a water maze and in an 8-arm radial maze. Latency as well as distance was greater in the 7-NI group in the water maze while swim speed was not affected. Latency, working memory (WM), and reference memory (RF) errors were also higher in the 7-NI group in the 8-arm maze. At the end of the second training day, these differences were no longer apparent. However, on the fourth training day, a transfer test in the water maze showed that 7-NI had produced a spatial memory deficit, reducing quadrant bias and the number of annulus crossings. Learning of a visual cue task was not affected. No difference between groups was visible in an open field test. We conclude that neuronal NO synthase activity plays a role in learning and memory formation in the rat.

PubMed Disclaimer

Similar articles

Cited by

Publication types