Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Sep;13(3):595-618.
doi: 10.1016/s0891-5520(05)70096-9.

Pharmacokinetics and pharmacodynamics of antibiotics in meningitis

Affiliations
Review

Pharmacokinetics and pharmacodynamics of antibiotics in meningitis

D R Andes et al. Infect Dis Clin North Am. 1999 Sep.

Abstract

The penetration of antimicrobials into the CSF is dependent on lipid solubility, molecular size, capillary and choroid plexus efflux pumps, protein binding, and the degree of inflammation. Penicillins, certain cephalosporins, carbapenems, fluoroquinolones, vancomycin, and rifampin provide the highest ratios of CSF levels to the MBC for common infecting organisms. For beta-lactam antibiotics, it is the duration of time that CSF concentrations exceed the MBC that determines the rate of bactericidal activity. It appears that levels should exceed the MBC for more than 50% of the dosing interval. The peak/MBC and AUC/MBC ratios are important determinants of efficacy for aminoglycosides and fluoroquinolones. Once-daily dosing of aminoglycosides is as effective as multiple-daily dosing regimens in experimental meningitis, probably because of drug-induced prolonged persistent effects. Fluoroquinolones do not produce as prolonged persistent effects and are slightly less effective when administered once daily. Although steroid use can reduce the penetration and decrease the bactericidal activity of some antimicrobials, such as vancomycin, in experimental meningitis, the clinical impact of steroid use in human meningitis is still unclear.

PubMed Disclaimer

MeSH terms

LinkOut - more resources