Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep;23(1):86-9.
doi: 10.1038/12692.

A radiation hybrid map of the zebrafish genome

Affiliations

A radiation hybrid map of the zebrafish genome

R Geisler et al. Nat Genet. 1999 Sep.

Abstract

Recent large-scale mutagenesis screens have made the zebrafish the first vertebrate organism to allow a forward genetic approach to the discovery of developmental control genes. Mutations can be cloned positionally, or placed on a simple sequence length polymorphism (SSLP) map to match them with mapped candidate genes and expressed sequence tags (ESTs). To facilitate the mapping of candidate genes and to increase the density of markers available for positional cloning, we have created a radiation hybrid (RH) map of the zebrafish genome. This technique is based on somatic cell hybrid lines produced by fusion of lethally irradiated cells of the species of interest with a rodent cell line. Random fragments of the donor chromosomes are integrated into recipient chromosomes or retained as separate minichromosomes. The radiation-induced breakpoints can be used for mapping in a manner analogous to genetic mapping, but at higher resolution and without a need for polymorphism. Genome-wide maps exist for the human, based on three RH panels of different resolutions, as well as for the dog, rat and mouse. For our map of the zebrafish genome, we used an existing RH panel and 1,451 sequence tagged site (STS) markers, including SSLPs, cloned candidate genes and ESTs. Of these, 1,275 (87.9%) have significant linkage to at least one other marker. The fraction of ESTs with significant linkage, which can be used as an estimate of map coverage, is 81.9%. We found the average marker retention frequency to be 18.4%. One cR3000 is equivalent to 61 kb, resulting in a potential resolution of approximately 350 kb.

PubMed Disclaimer

Similar articles

  • Radiation hybrid map of the mouse genome.
    Van Etten WJ, Steen RG, Nguyen H, Castle AB, Slonim DK, Ge B, Nusbaum C, Schuler GD, Lander ES, Hudson TJ. Van Etten WJ, et al. Nat Genet. 1999 Aug;22(4):384-7. doi: 10.1038/11962. Nat Genet. 1999. PMID: 10431245
  • A microsatellite genetic linkage map for zebrafish (Danio rerio).
    Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S, Shimoda N, Driever W, Fishman MC, Jacob HJ. Knapik EW, et al. Nat Genet. 1998 Apr;18(4):338-43. doi: 10.1038/ng0498-338. Nat Genet. 1998. PMID: 9537415
  • A high-resolution radiation hybrid map of the proximal portion of mouse chromosome 5.
    Tarantino LM, Feiner L, Alavizadeh A, Wiltshire T, Hurle B, Ornitz DM, Webber AL, Raper J, Lengeling A, Rowe LB, Bucan M. Tarantino LM, et al. Genomics. 2000 May 15;66(1):55-64. doi: 10.1006/geno.2000.6183. Genomics. 2000. PMID: 10843805
  • A gene map of the human genome.
    Schuler GD, Boguski MS, Stewart EA, Stein LD, Gyapay G, Rice K, White RE, Rodriguez-Tomé P, Aggarwal A, Bajorek E, Bentolila S, Birren BB, Butler A, Castle AB, Chiannilkulchai N, Chu A, Clee C, Cowles S, Day PJ, Dibling T, Drouot N, Dunham I, Duprat S, East C, Edwards C, Fan JB, Fang N, Fizames C, Garrett C, Green L, Hadley D, Harris M, Harrison P, Brady S, Hicks A, Holloway E, Hui L, Hussain S, Louis-Dit-Sully C, Ma J, MacGilvery A, Mader C, Maratukulam A, Matise TC, McKusick KB, Morissette J, Mungall A, Muselet D, Nusbaum HC, Page DC, Peck A, Perkins S, Piercy M, Qin F, Quackenbush J, Ranby S, Reif T, Rozen S, Sanders C, She X, Silva J, Slonim DK, Soderlund C, Sun WL, Tabar P, Thangarajah T, Vega-Czarny N, Vollrath D, Voyticky S, Wilmer T, Wu X, Adams MD, Auffray C, Walter NA, Brandon R, Dehejia A, Goodfellow PN, Houlgatte R, Hudson JR Jr, Ide SE, Iorio KR, Lee WY, Seki N, Nagase T, Ishikawa K, Nomura N, Phillips C, Polymeropoulos MH, Sandusky M, Schmitt K, Berry R, Swanson K, Torres R, Venter JC, Sikela JM, Beckmann JS, Weissenbach J, Myers RM, Cox DR, James MR, Bentley D, Deloukas P, Lander ES, Hudson TJ. Schuler GD, et al. Science. 1996 Oct 25;274(5287):540-6. Science. 1996. PMID: 8849440 Review.
  • [Mapping and human genome sequence program].
    Weissenbach J. Weissenbach J. Pathol Biol (Paris). 1997 Mar;45(3):205-8. Pathol Biol (Paris). 1997. PMID: 9296064 Review. French.

Cited by

Publication types

Substances

LinkOut - more resources