Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep 15;27(18):3690-5.
doi: 10.1093/nar/27.18.3690.

Repression of IS200 transposase synthesis by RNA secondary structures

Affiliations

Repression of IS200 transposase synthesis by RNA secondary structures

C R Beuzón et al. Nucleic Acids Res. .

Abstract

The IS 200 transposase, a 16 kDa polypeptide encoded by the single open reading frame (ORF) of the insertion element, has been identified using an expression system based on T7 RNA polymerase. In wild-type IS 200, two sets of internal inverted repeats that generate RNA secondary structures provide two independent mechanisms for repression of transposase synthesis. The inverted repeat located near the left end of IS 200 is a transcriptional terminator that terminates read-through transcripts before they reach the IS 200 ORF. The terminator is functional in both directions and may terminate >80% of transcripts. Another control operates at the translational level: transposase synthesis is inhibited by occlusion of the ribosome-binding site (RBS) of the IS 200 ORF. The RBS (5'-AGGGG-3') is occluded by formation of a mRNA stem-loop structure whose 3' end is located only 3 nt upstream of the start codon. This mechanism reduces transposase synthesis approximately 10-fold. Primer extension experiments with AMV reverse transcriptase have provided evidence that this stem-loop RNA structure is actually formed. Tight repression of transposase synthesis, achieved through synergistic mechanisms of negative control, may explain the unusually low transposition frequency of IS 200.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources