Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep 10;274(37):26448-53.
doi: 10.1074/jbc.274.37.26448.

Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity

Affiliations
Free article

Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity

L J Egan et al. J Biol Chem. .
Free article

Abstract

Nuclear factor kappaB (NF-kappaB) is an inducible transcription factor that regulates genes important in immunity and inflammation. The activity of NF-kappaB is highly regulated: transcriptionally active NF-kappaB proteins are sequestered in the cytoplasm by inhibitory proteins, IkappaB. A variety of extracellular signals, including interleukin-1 (IL-1), activate NF-kappaB by inducing phosphorylation and degradation of IkappaB, allowing nuclear translocation and DNA binding of NF-kappaB. Many of the stimuli that activate NF-kappaB by inducing IkappaB degradation also cause phosphorylation of the NF-kappaB RelA (p65) polypeptide. The transactivating capacity of RelA is positively regulated by phosphorylation, suggesting that in addition to cytosolic sequestration by IkappaB, phosphorylation represents another mechanism for control of NF-kappaB activity. In this report, we demonstrate that mesalamine, an anti-inflammatory aminosalicylate, dose-dependently inhibits IL-1-stimulated NF-kappaB-dependent transcription without preventing IkappaB degradation or nuclear translocation and DNA binding of the transcriptionally active NF-kappaB proteins, RelA, c-Rel, or RelB. Mesalamine was found to inhibit IL-1-stimulated RelA phosphorylation. These data suggest that pharmacologic modulation of the phosphorylation status of RelA regulates the transcriptional activity of NF-kappaB, independent of nuclear translocation and DNA binding. These findings highlight the importance of inducible phosphorylation of RelA in the control of NF-kappaB activity.

PubMed Disclaimer

Publication types

LinkOut - more resources