Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Sep;10(9):2018-28.
doi: 10.1681/ASN.V1092018.

How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT

Affiliations
Review

How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT

J C Pope 4th et al. J Am Soc Nephrol. 1999 Sep.

Abstract

CAKUT are problems that often require surgical intervention or, in the worst case, lead to renal failure and the need for dialysis and/or renal transplantation. It is believed that these anomalies share a common genetic cause and to date there has been no good animal model with which to study these abnormalities. Although the abnormal interaction between the ureteral bud and metanephric blastema leads to renal hypodysplasia, vesicoureteral reflux, and ectopic ureters to name a few, the genetic and biochemical modulation of urinary tract development is not understood. Studies using the mouse strain mutant for angiotensin type 2 (AT2) receptors have given new insight into this mystery. The animals show defective apoptosis of undifferentiated mesenchymal cells in the area surrounding the developing kidney and urinary tract. This abnormal apoptosis may well interfere with the normal interaction between the ureteral bud and metanephric blastema resulting in CAKUT. This abnormal interaction would theoretically lead to preexisting intrinsic abnormalities of the kidney, which are programmed and take effect early in embryonic development. In the worst cases, the renal abnormalities would lead to progressive deterioration of renal function. Undoubtedly, there are more genes and biochemical modulators involved in this process other than the RAS and AT2 receptors. Our current animal model gives new and unique possibilities with which to study development of the kidney and urinary tract and ultimately seek ways of preventing an often debilitating disease process.

PubMed Disclaimer

LinkOut - more resources