Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Aug;16(8):663-9.
doi: 10.1046/j.1464-5491.1999.00136.x.

Is glycation of low density lipoproteins in patients with Type 2 diabetes mellitus a LDL pre-oxidative condition?

Affiliations

Is glycation of low density lipoproteins in patients with Type 2 diabetes mellitus a LDL pre-oxidative condition?

E Moro et al. Diabet Med. 1999 Aug.

Abstract

Aims: The study aimed to evaluate whether low density lipoprotein (LDL) in diabetic patients is more glycated and susceptible to oxidation than in non-diabetic subjects and investigated the hypothesis that LDL glycation is associated with an increased plasma concentration of LDL- (a circulating electronegatively charged LDL), proposed as an index of in vivo oxidation.

Methods: LDL glycation was measured by a competitive enzyme immunoadsorbent assay, using a monoclonal antibody against glycated apoB in 24 Type 2 diabetic patients and 12 healthy controls. LDL- was separated by ion-exchange HPLC in LDL samples obtained after sequential preparative ultracentrifugation (density range 1.019-1.063). In vitro LDL susceptibility to oxidation was evaluated by following the kinetics of conjugated diene formation and by measuring the lag-phase time in the presence of copper (Cu2+) ions.

Results: The percentages of glycated apoB (3.33+/-2.54% vs. 1.24+/-0.71%) and of LDL- (3.88+/-1.49% vs. 2.34+/-1.03%) in total LDL were significantly higher in diabetic patients (P<0.01 for both). LDL- was positively correlated with glycated apoB (r = 0.68, P<0.001). LDL isolated from Type 2 diabetic patients showed a significant decrease (P<0.001) in the resistance to oxidative stress, as indicated by the shorter lag-phase time (91+/-12.6 vs. 120+/-24.5 min). The lag-phase time was inversely correlated with glycated apoB (r = -0.65, P<0.001) and LDL- concentrations (r = -0.69, P<0.001).

Conclusions: In this population of Type 2 diabetic patients, LDL were more glycated, more susceptible to in vitro oxidation and had a higher percentage of electronegative LDL. The glycation of apoB is proposed to be associated with a significative increase of in vivo and in vitro LDL oxidation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources