Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Nov 28;157(2):171-179.
doi: 10.1016/s0378-5173(97)00222-6.

Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN)

Affiliations

Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN)

C Schwarz et al. Int J Pharm. .

Abstract

Solid lipid nanoparticles (SLN) of a quality acceptable for i.v. administration were freeze-dried. Dynasan 112 and Compritol ATO 888 were used as lipid matrices for the SLN, stabilisers were Lipoid S 75 and poloxamer 188, respectively. To study the protective effect of various types and concentrations of cryoprotectants (e.g. carbohydrates), freeze-thaw cycles were carried out as a pre-test. The sugar trehalose proved to be most effective in preventing particle growth during freezing and thawing and also in the freeze-drying process. Changes in particle size distribution during lyophilisation could be minimised by optimising the parameters of the lyophilisation process, i.e. freezing velocity and redispersion method. Lyophilised drug-free SLN could be reconstituted in a quality considered suitable for i.v. injection with regard to the size distribution. Loading with model drugs (tetracaine, etomidate) impairs the quality of reconstituted SLN. However, the lyophilisate quality is sufficient for formulations less critical to limited particle growth, e.g. freeze-dried SLN for oral administration.

PubMed Disclaimer

LinkOut - more resources