Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul 28;378(1):85-97.
doi: 10.1016/s0014-2999(99)00453-7.

Relaxant activity in rat aorta and trachea, conversion to a muscarinic receptor antagonist and structure-activity relationships of new K(ATP) activating 6-varied benzopyrans

Affiliations

Relaxant activity in rat aorta and trachea, conversion to a muscarinic receptor antagonist and structure-activity relationships of new K(ATP) activating 6-varied benzopyrans

H Lemoine et al. Eur J Pharmacol. .

Abstract

To characterize ATP-sensitive channels (K(ATP) channels) benzopyrans with different substituents at position 6 were synthesized as new K(ATP)-activators. Their relaxant potencies were determined in rat aorta and trachea. In aorta, pEC50-values (-log, M) ranged from 7.37 to 5.43; in trachea, pEC50-values were 0.3 to 0.8 log units lower. Functional data were compared with binding data obtained in calf tracheal cells using the cyanoguanidine [3H]P1075 (N-cyano-N'-1,1-dimethyl[2,3(n)-3H]propyl)-N11-(3-pyridinyl)guanidine) as radioligand. A high correlation (r = 0.96) between pEC50- and pKD-values indicated that tracheal relaxation produced by benzopyrans is mediated via K(ATP) channels without signal amplification. The permanently charged trimethylammonium derivative designed as a probe for the membrane site of action completely lost its affinity for K(ATP) channels, but converted to an antagonist for muscarinic acetylcholine receptors (pK(B) = 6.12+/-0.10), as confirmed in radioligand binding studies (pK(D) = 5.77+/-0.04). Structure-activity analyses revealed that the 6-substituent influences biological activity by a direct receptor interaction of its own and not indirectly by withdrawing electrons from the benzopyran nucleus. The variance of the biological activity is primarily determined by electrostatic properties, but desolvation energies additionally contribute.

PubMed Disclaimer

MeSH terms

LinkOut - more resources