A piston model for transmembrane signaling of the aspartate receptor
- PMID: 10481014
- DOI: 10.1126/science.285.5434.1751
A piston model for transmembrane signaling of the aspartate receptor
Abstract
To characterize the mechanism by which receptors propagate conformational changes across membranes, nitroxide spin labels were attached at strategic positions in the bacterial aspartate receptor. By collecting the electron paramagnetic resonance spectra of these labeled receptors in the presence and absence of the ligand aspartate, ligand binding was shown to generate an approximately 1 angstrom intrasubunit piston-type movement of one transmembrane helix downward relative to the other transmembrane helix. The receptor-associated phosphorylation cascade proteins CheA and CheW did not alter the ligand-induced movement. Because the piston movement is very small, the ability of receptors to produce large outcomes in response to stimuli is caused by the ability of the receptor-coupled enzymes to detect small changes in the conformation of the receptor.
Comment in
-
Perspectives: signal transduction. Proteins in motion.Science. 1999 Sep 10;285(5434):1682-3. doi: 10.1126/science.285.5434.1682. Science. 1999. PMID: 10523185 No abstract available.
Similar articles
-
Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain.Science. 1996 Feb 23;271(5252):1113-6. doi: 10.1126/science.271.5252.1113. Science. 1996. PMID: 8599087
-
Engineered socket study of signaling through a four-helix bundle: evidence for a yin-yang mechanism in the kinase control module of the aspartate receptor.Biochemistry. 2009 Oct 6;48(39):9266-77. doi: 10.1021/bi901020d. Biochemistry. 2009. PMID: 19705835 Free PMC article.
-
Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity.Biochemistry. 2005 Feb 8;44(5):1550-60. doi: 10.1021/bi048089z. Biochemistry. 2005. PMID: 15683239 Free PMC article.
-
Bacterial chemotaxis coupling protein: Structure, function and diversity.Microbiol Res. 2019 Feb;219:40-48. doi: 10.1016/j.micres.2018.11.001. Epub 2018 Nov 6. Microbiol Res. 2019. PMID: 30642465 Review.
-
Use of 19F NMR to probe protein structure and conformational changes.Annu Rev Biophys Biomol Struct. 1996;25:163-95. doi: 10.1146/annurev.bb.25.060196.001115. Annu Rev Biophys Biomol Struct. 1996. PMID: 8800468 Free PMC article. Review.
Cited by
-
AlphaFold2 captures the conformational landscape of the HAMP signaling domain.Protein Sci. 2024 Jan;33(1):e4846. doi: 10.1002/pro.4846. Protein Sci. 2024. PMID: 38010737 Free PMC article.
-
PAS domain of the Aer redox sensor requires C-terminal residues for native-fold formation and flavin adenine dinucleotide binding.J Bacteriol. 2004 Oct;186(20):6782-91. doi: 10.1128/JB.186.20.6782-6791.2004. J Bacteriol. 2004. PMID: 15466030 Free PMC article.
-
A structural basis for integrin activation by the cytoplasmic tail of the alpha IIb-subunit.Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1450-5. doi: 10.1073/pnas.040548197. Proc Natl Acad Sci U S A. 2000. PMID: 10677482 Free PMC article.
-
A phenylalanine rotameric switch for signal-state control in bacterial chemoreceptors.Nat Commun. 2013;4:2881. doi: 10.1038/ncomms3881. Nat Commun. 2013. PMID: 24335957 Free PMC article.
-
Fractional-Order Susceptible-Infected Model: Definition and Applications to the Study of COVID-19 Main Protease.Fract Calc Appl Anal. 2020;23(3):635-655. doi: 10.1515/fca-2020-0033. Epub 2020 Jul 11. Fract Calc Appl Anal. 2020. PMID: 34849076 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases