Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep;277(3):C545-53.
doi: 10.1152/ajpcell.1999.277.3.C545.

Apical and basolateral CO2-HCO3- permeability in cultured bovine corneal endothelial cells

Affiliations

Apical and basolateral CO2-HCO3- permeability in cultured bovine corneal endothelial cells

J A Bonanno et al. Am J Physiol. 1999 Sep.

Abstract

Corneal endothelial function is dependent on HCO3- transport. However, the relative HCO3- permeabilities of the apical and basolateral membranes are unknown. Using changes in intracellular pH secondary to removing CO2-HCO3- (at constant pH) or removing HCO3- alone (at constant CO2) from apical or basolateral compartments, we determined the relative apical and basolateral HCO3- permeabilities and their dependencies on Na+ and Cl-. Removal of CO2-HCO3- from the apical side caused a steady-state alkalinization (+0.08 pH units), and removal from the basolateral side caused an acidification (-0.05 pH units). Removal of HCO3- at constant CO(2) indicated that the basolateral HCO3- fluxes were about three to four times the apical fluxes. Reducing perfusate Na+ concentration to 10 mM had no effect on apical flux but slowed basolateral HCO3- flux by one-half. In the absence of Cl-, there was an apparent increase in apical HCO3- flux under constant-pH conditions; however, no net change could be measured under constant-CO2 conditions. Basolateral flux was slowed approximately 30% in the absence of Cl-, but the net flux was unchanged. The steady-state alkalinization after removal of CO2-HCO3- apically suggests that CO2 diffusion may contribute to apical HCO3- flux through the action of a membrane-associated carbonic anhydrase. Indeed, apical CO2 fluxes were inhibited by the extracellular carbonic anhydrase inhibitor benzolamide and partially restored by exogenous carbonic anhydrase. The presence of membrane-bound carbonic anhydrase (CAIV) was confirmed by immunoblotting. We conclude that the Na+-dependent basolateral HCO3- permeability is consistent with Na+-nHCO3- cotransport. Changes in HCO3- flux in the absence of Cl- are most likely due to Na+-nHCO3- cotransport-induced membrane potential changes that cannot be dissipated. Apical HCO3- permeability is relatively low, but may be augmented by CO2 diffusion in conjunction with a CAIV.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources