Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep;277(3):G736-44.
doi: 10.1152/ajpgi.1999.277.3.G736.

Responsiveness of beta-escin-permeabilized rabbit gastric gland model: effects of functional peptide fragments

Affiliations

Responsiveness of beta-escin-permeabilized rabbit gastric gland model: effects of functional peptide fragments

K Akagi et al. Am J Physiol. 1999 Sep.

Abstract

We established a beta-escin-permeabilized gland model with the use of rabbit isolated gastric glands. The glands retained an ability to secrete acid, monitored by [14C]aminopyrine accumulation, in response to cAMP, forskolin, and histamine. These responses were all inhibited by cAMP-dependent protein kinase inhibitory peptide. Myosin light-chain kinase inhibitory peptide also suppressed aminopyrine accumulation, whereas the inhibitory peptide of protein kinase C or that of calmodulin kinase II was without effect. Guanosine-5'-O-(3-thiotriphosphate) (GTPgammaS) abolished cAMP-stimulated acid secretion concomitantly, interfering with the redistribution of H+-K+-ATPase from tubulovesicles to the apical membrane. To identify the targets of GTPgammaS, effects of peptide fragments of certain GTP-binding proteins were examined. Although none of the peptides related to Rab proteins showed any effect, the inhibitory peptide of Arf protein inhibited cAMP-stimulated secretion. These results demonstrate that our new model, the beta-escin-permeabilized gland, allows the introduction of relatively large molecules, e.g., peptides, into the cell, and will be quite useful for analyzing signal transduction of parietal cell function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources