Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep;277(3):L628-35.
doi: 10.1152/ajplung.1999.277.3.L628.

Collagen accumulation is decreased in SPARC-null mice with bleomycin-induced pulmonary fibrosis

Affiliations

Collagen accumulation is decreased in SPARC-null mice with bleomycin-induced pulmonary fibrosis

T P Strandjord et al. Am J Physiol. 1999 Sep.

Abstract

Secreted protein acidic and rich in cysteine (SPARC) has been shown to be coexpressed with type I collagen in tissues undergoing remodeling and wound repair. We speculated that SPARC is required for the accumulation of collagen in lung injury and that its absence would attenuate collagen accumulation. Accordingly, we have assessed levels of collagen in SPARC-null mice in an intratracheal bleomycin-injury model of pulmonary fibrosis. Eight- to ten-week-old SPARC-null and wild-type (WT) mice received bleomycin (0.0035 U/g) or saline intratracheally and were subsequently killed after 14 days. Relative levels of SPARC mRNA were increased 2.7-fold (P < 0.001) in bleomycin-treated WT lungs in comparison with saline-treated lungs. Protein from bleomycin-treated WT lung contained significantly more hydroxyproline (191.9 microg/lung) than protein from either bleomycin-treated SPARC-null lungs or saline-treated WT and SPARC-null lungs (147.4 microg/lung, 125.4 microg/lung, and 113. 0 microg/lung, respectively; P < 0.03). These results indicate that SPARC is increased in response to lung injury and that accumulation of collagen, as indicated by hydroxyproline content, is attenuated in the absence of SPARC. The properties of SPARC as a matricellular protein associated with cell proliferation and matrix turnover are consistent with its participation in the development of pulmonary fibrosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources