Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Oct;120(10):2967-78.
doi: 10.1242/dev.120.10.2967.

Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development

Affiliations

Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development

R A Torres-Ruiz et al. Development. 1994 Oct.

Abstract

The pattern of cell division is very regular in Arabidopsis embryogenesis, enabling seedling structures to be traced back to groups of cells in the early embryo. Recessive mutations in the FASS gene alter the pattern of cell division from the zygote, without interfering with embryonic pattern formation: although no primordia of seedling structures can be recognised by morphological criteria at the early-heart stage, all elements of the body pattern are differentiated in the seedling. fass seedlings are strongly compressed in the apical-basal axis and enlarged circumferentially, notably in the hypocotyl. Depending on the width of the hypocotyl, fass seedlings may have up to three supernumerary cotyledons. fass mutants can develop into tiny adult plants with all parts, including floral organs, strongly compressed in their longitudinal axis. At the cellular level, fass mutations affect cell elongation and orientation of cell walls but do not interfere with cell polarity as evidenced by the unequal division of the zygote. The results suggest that the FASS gene is required for morphogenesis, i.e., oriented cell divisions and position-dependent cell shape changes generating body shape, but not for cell polarity which seems essential for pattern formation.

PubMed Disclaimer

Publication types

LinkOut - more resources