Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Oct;8(11):2079-86.
doi: 10.1093/hmg/8.11.2079.

Ectodysplasin is a collagenous trimeric type II membrane protein with a tumor necrosis factor-like domain and co-localizes with cytoskeletal structures at lateral and apical surfaces of cells

Affiliations
Comparative Study

Ectodysplasin is a collagenous trimeric type II membrane protein with a tumor necrosis factor-like domain and co-localizes with cytoskeletal structures at lateral and apical surfaces of cells

S Ezer et al. Hum Mol Genet. 1999 Oct.

Abstract

Anhidrotic ectodermal dysplasia (EDA) is a human genetic disorder of impaired ectodermal appendage development. The EDA gene encodes isoforms of a novel transmembrane protein, ectodysplasin. The sequence of the longest isoform includes an interrupted collagenous domain of 19 Gly-X-Y repeats and a motif conserved in the tumor necrosis factor (TNF)-related ligand family. In order to understand better the function of the ectodysplasin protein molecule and its domains, we have studied the processing and localization of wild-type and mutated isoforms in transfected human fetal kidney 293 and monkey kidney COS-1 cells. Similar to other members of collagenous membrane proteins and members of TNF-related ligands, ectodysplasin is a type II membrane protein and it forms trimers. The membrane localization of ectodysplasin is asymmetrical: it is found on the apical and lateral surfaces of the cells where it co-localizes with cytoskeletal structures. The TNF-like motif and cysteines found near the C-terminus are necessary for correct transport to the cell membrane, but the intracellular and collagenous domains are not required for the localization pattern. Our results suggest that ectodysplasin is a new member in the TNF-related ligand family involved in the early epithelial-mesenchymal interaction that regulates ectodermal appendage formation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources