Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep 24;274(39):27505-12.
doi: 10.1074/jbc.274.39.27505.

Aggregation of RANTES is responsible for its inflammatory properties. Characterization of nonaggregating, noninflammatory RANTES mutants

Affiliations
Free article

Aggregation of RANTES is responsible for its inflammatory properties. Characterization of nonaggregating, noninflammatory RANTES mutants

V Appay et al. J Biol Chem. .
Free article

Abstract

The biology of RANTES (regulated on activation normal T cell expressed) aggregation has been investigated using RANTES and disaggregated variants, enabling comparison of aggregated, tetrameric, and dimeric RANTES forms. Disaggregated variants retain their G(i)-type G protein-coupled receptor-mediated biological activities. A correlation between RANTES aggregation and cellular activation has been demonstrated. Aggregated RANTES, but not disaggregated RANTES, activates human T cells, monocytes, and neutrophils. Dimeric RANTES has lost its cellular activating activity, rendering it noninflammatory. Macrophage inflammatory protein 1alpha, macrophage inflammatory protein-1beta, and erythrocytes are potent natural antagonists of aggregated RANTES-induced cellular activation. There is a clear difference in the signaling properties of aggregated and disaggregated RANTES forms, separating the dual signaling pathways of RANTES and the enhancing and suppressive effects of RANTES on human immunodeficiency virus infection. Disaggregated RANTES will be a valuable tool to explore the biology of RANTES action in human immunodeficiency virus infection and in inflammatory disease.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources