Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep 24;274(39):27875-84.
doi: 10.1074/jbc.274.39.27875.

The anti-HIV pseudopeptide HB-19 forms a complex with the cell-surface-expressed nucleolin independent of heparan sulfate proteoglycans

Affiliations
Free article

The anti-HIV pseudopeptide HB-19 forms a complex with the cell-surface-expressed nucleolin independent of heparan sulfate proteoglycans

S Nisole et al. J Biol Chem. .
Free article

Abstract

The HB-19 pseudopeptide 5[Kpsi(CH(2)N)PR]-TASP, psi(CH(2)N) for reduced peptide bond, is a specific inhibitor of human immunodeficiency virus (HIV) infection in different CD4(+) cell lines and in primary T-lymphocytes and macrophages. Here, by using an experimental CD4(+) cell model to monitor HIV entry and infection, we demonstrate that HB-19 binds the cell surface and inhibits attachment of HIV particles to permissive cells. At concentrations that inhibit HIV attachment, HB-19 binds cells irreversibly, becomes complexed with the cell-surface-expressed nucleolin, and eventually results in its degradation. Accordingly, by confocal immunofluorescence microscopy, we demonstrate the drastic reduction of the cell-surface-expressed nucleolin following treatment of cells with HB-19. HIV particles can prevent the binding of HB-19 to cells and inhibit complex formation with nucleolin. Such a competition between viral particles and HB-19 is consistent with the implication of nucleolin in the process of HIV attachment to target cells. We show that another inhibitor of HIV infection, the fibroblast growth factor-2 (FGF-2) that uses cell-surface-expressed heparan sulfate proteoglycans as low affinity receptors, binds cells and blocks attachment of HIV to permissive cells. FGF-2 does not prevent the binding of HB-19 to cells and to nucleolin, and similarly HB-19 has no apparent effect on the binding of FGF-2 to the cell surface. The lack of competition between these two anti-HIV agents rules out the potential involvement of heparan sulfate proteoglycans in the mechanism of anti-HIV effect of HB-19, thus pointing out that nucleolin is its main target.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources