Rehabilitation of brain damage: brain plasticity and principles of guided recovery
- PMID: 10489541
- DOI: 10.1037/0033-2909.125.5.544
Rehabilitation of brain damage: brain plasticity and principles of guided recovery
Abstract
Rehabilitation of the damaged brain can foster reconnection of damaged neural circuits; Hebbian learning mechanisms play an important part in this. The authors propose a triage of post-lesion states, depending on the loss of connectivity in particular circuits. A small loss of connectivity will tend to lead to autonomous recovery, whereas a major loss of connectivity will lead to permanent loss of function; for such individuals, a compensatory approach to recovery is required. The third group have potentially rescuable lesioned circuits, but guided recovery depends on providing precisely targeted bottom-up and top-down inputs, maintaining adequate levels of arousal, and avoiding activation of competitor circuits that may suppress activity in target circuits. Empirical data are implemented in a neural network model, and clinical recommendations for the practice of rehabilitation following brain damage are made.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
