Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep 9;401(6749):150-2.
doi: 10.1038/43639.

Unidirectional rotary motion in a molecular system

Affiliations

Unidirectional rotary motion in a molecular system

T R Kelly et al. Nature. .

Abstract

The conversion of energy into controlled motion plays an important role in both man-made devices and biological systems. The principles of operation of conventional motors are well established, but the molecular processes used by 'biological motors' such as muscle fibres, flagella and cilia to convert chemical energy into co-ordinated movement remain poorly understood. Although 'brownian ratchets' are known to permit thermally activated motion in one direction only, the concept of channelling random thermal energy into controlled motion has not yet been extended to the molecular level. Here we describe a molecule that uses chemical energy to activate and bias a thermally induced isomerization reaction, and thereby achieve unidirectional intramolecular rotary motion. The motion consists of a 120 degrees rotation around a single bond connecting a three-bladed subunit to the bulky remainder of the molecule, and unidirectional motion is achieved by reversibly introducing a tether between the two units to energetically favour one of the two possible rotation directions. Although our system does not achieve continuous and fast rotation, the design principles that we have used may prove relevant for a better understanding of biological and synthetic molecular motors producing unidirectional rotary motion.

PubMed Disclaimer

Comment in

  • Synthetic molecular motors.
    Davis AP. Davis AP. Nature. 1999 Sep 9;401(6749):120-1. doi: 10.1038/43576. Nature. 1999. PMID: 10490015 No abstract available.

Publication types

LinkOut - more resources