Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Aug;44(8 Suppl):114S-118S.

Tachykinins and in vivo gut motility

Affiliations
  • PMID: 10490050
Review

Tachykinins and in vivo gut motility

S K Sarna. Dig Dis Sci. 1999 Aug.

Abstract

The gut smooth muscle in the intact conscious state exhibits three distinct types of contractions: rhythmic phasic contractions, tone, and ultrapropulsive contractions. The motility functions of these contractions differ markedly. The phasic contractions mix and propel the ingested food in an orderly fashion so that the nutrients can be absorbed. The ultrapropulsive contractions are of two types, giant migrating contractions (GMCs) and retrograde giant contractions (RGCs). GMCs produce mass movements in the caudal direction and RGCs in the oral direction. GMCs are associated with the symptoms of diarrhea, abdominal cramping, tenesmus, and urgency of defecation. The RGCs regurgitate the contents of the upper small intestine into the stomach in preparation of their expulsion by the somatomotor response. Tachykinins and their receptors are strategically located on the enteric neurons and smooth muscle cells to regulate the above contractions. Recent findings show that NK-1 receptors located on colonic circular smooth muscle cells may mediate colonic GMCs, whereas NK-3 receptors located on presynaptic neurons may mediate the small intestinal GMCs. The molecular and cellular mechanisms of stimulation of RGCs are not known. NK-1 receptor antagonists have shown potential therapeutic effects on vomiting induced by a variety of stimuli in experimental animals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources