Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Oct;3(3):213-24.
doi: 10.1023/a:1009887306055.

Electrical impedance properties of normal and chronically infarcted left ventricular myocardium

Affiliations
Comparative Study

Electrical impedance properties of normal and chronically infarcted left ventricular myocardium

D Schwartzman et al. J Interv Card Electrophysiol. 1999 Oct.

Abstract

Background: Previous reports have disclosed that a significant difference exists between the electrical impedance properties of healthy and chronically infarcted ventricular myocardium.

Purpose: To assess the potential utility of electrical impedance as the basis for mapping in chronically infarcted left ventricular myocardium. Specifically: (1) to delineate electrical impedance properties of healthy and chronically infarcted ventricular myocardium, with special emphasis on the infarction border zone; (2) to correlate impedance properties with tissue histology; (3) to correlate impedance properties with electrogram amplitude and duration; (4) To demonstrate that endocardial impedance can be measured effectively in vivo using an electrode mounted on a catheter inserted percutaneously.

Methods: An ovine model of chronic left ventricular infarction was utilized. Sites of healthy myocardium, densely infarcted myocardium and the infarction border zone were investigated. Bulk impedance was measured in vitro using capacitor cell, four-electrode and unipolar techniques. Epicardial and endocardial impedances were measured in vivo using four-electrode and unipolar techniques. Impedance was measured at multiple frequencies. Electrographic amplitude, duration and amplitude/duration ratio were measured using bipolar electrograms during sinus rhythm. Quantitation of tissue content of myocytes, collagen, elastin and neurovascular elements was performed.

Results: Densely infarcted myocardial impedance was significantly lower than healthy myocardium. Impedance gradually decreased in the border zone transitioning between healthy myocardium and dense infarction. Decreasing impedance correlated with a decrease in tissue myocyte content. The magnitude of the difference in impedance between densely infarcted and healthy myocardium increased as the measurement frequency decreased. Healthy myocardium exhibited a marked frequency dependence in its impedance properties; this phenomenon was not observed in densely infarcted myocardium. There was a direct association between impedance and both electrogram amplitude and amplitude/duration ratio. There was an inverse association between impedance and electrogram duration. Endocardial impedance, measured in vivo using a electrode catheter inserted percutaneously, was demonstrated to distinguish between healthy and infarcted myocardium.

Conclusions: The electrical impedance properties of healthy and infarcted left ventricular myocardium differ markedly. The properties of the infarction border zone are intermediate between healthy and infarcted myocardium. Impedance may be a useful assay of cardiac tissue content and adaptable for cardiac mapping in vivo. Condensed Abstract. To delineate the electrical impedance properties of healthy and chronically infarcted left ventricular myocardium emphasizing the infarction border zone, impedance was measured in chronically infarcted ovine hearts. Densely infarcted myocardial impedance was significantly lower than healthy myocardium. Impedance gradually decreased in the infarction border zone in transition between healthy myocardium and dense infarction. This correlated with a decreasing myocyte content. The magnitude of the difference in impedance between densely infarcted and healthy myocardium increased as measurement frequency decreased. There was a direct association between impedance and electrogram characteristics. Endocardial impedance, measured in vivo using an electrode catheter inserted percutaneously, distinguished between healthy and infarcted myocardium

PubMed Disclaimer

References

    1. Ann Thorac Surg. 1989 Dec;48(6):838-45 - PubMed
    1. Ann Biomed Eng. 1992;20(3):269-88 - PubMed
    1. Circ Res. 1987 Aug;61(2):271-9 - PubMed
    1. Phys Med Biol. 1987 May;32(5):615-21 - PubMed
    1. Circulation. 1985 Sep;72(3):596-611 - PubMed

Publication types