Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct 1;343 Pt 1(Pt 1):45-52.

Lysophosphatidic acid-mediated Ca2+ mobilization in human SH-SY5Y neuroblastoma cells is independent of phosphoinositide signalling, but dependent on sphingosine kinase activation

Affiliations

Lysophosphatidic acid-mediated Ca2+ mobilization in human SH-SY5Y neuroblastoma cells is independent of phosphoinositide signalling, but dependent on sphingosine kinase activation

K W Young et al. Biochem J. .

Abstract

Extracellular application of lysophosphatidic acid (LPA) elevated intracellular Ca(2+) concentration ([Ca(2+)](i)) in human SH-SY5Y neuroblastoma cells. The maximal response to LPA occurred between 0. 1 and 1 microM, at which point [Ca(2+)](i) was increased by approx. 500 nM. This increase was of similar magnitude to that caused by the muscarinic acetylcholine receptor agonist methacholine (MCh), although the initial rate of release by LPA was slower. Both LPA and MCh released Ca(2+) from intracellular stores, as assessed by inhibition of their effects by thapsigargin, a blocker of endoplasmic reticular Ca(2+) uptake, and by the persistence of their action in nominally Ca(2+)-free extracellular medium. Similarly, both agonists appeared to stimulate store-refilling Ca(2+) entry. MCh produced a marked elevation in cellular Ins(1,4,5)P(3) and stimulated [(3)H]InsP accumulation in the presence of Li(+). In contrast, LPA failed to stimulate detectable phosphoinositide turnover. Chronic down-regulation of Ins(1,4,5)P(3) receptor (InsP(3)R) proteins with MCh did not affect Ca(2+) responses to LPA. In addition, heparin, a competitive antagonist of InsP(3)Rs, blocked Ca(2+)-mobilization in permeabilized SH-SY5Y cells in response to MCh or exogenously added Ins(1,4,5)P(3), but failed to inhibit Ca(2+)-release induced by LPA. Elevation of [Ca(2+)](i) elicited by LPA was blocked by guanosine 5'-[beta-thio]-diphosphate, indicating that this agonist acts via a G-protein-coupled receptor. However, pertussis toxin was without effect on LPA-evoked [Ca(2+)](i) responses, suggesting that G(i/o)-proteins were not involved. In the absence of extracellular Ca(2+), N,N-dimethylsphingosine (DMS, 30 microM), a competitive inhibitor of sphingosine kinase, blocked LPA-induced Ca(2+) responses by almost 90%. In addition, MCh-induced Ca(2+) responses were also diminished by the addition of DMS, although to a lesser extent than with LPA. We conclude that LPA mobilizes intracellular Ca(2+)-stores in SH-SY5Y cells independently of the generation and action of Ins(1,4,5)P(3). Furthermore, the Ca(2+)-response to LPA appears to be dependent on sphingosine kinase activation and the potential generation of the putative second messenger sphingosine 1-phosphate.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1996 Jul 26;271(30):17739-45 - PubMed
    1. J Biol Chem. 1998 May 22;273(21):12710-5 - PubMed
    1. Biochem J. 1996 Sep 15;318 ( Pt 3):871-8 - PubMed
    1. Biochem J. 1996 Oct 15;319 ( Pt 2):393-7 - PubMed
    1. J Cell Biol. 1996 Nov;135(4):1071-83 - PubMed

Publication types

MeSH terms