Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;40(2):145-58.
doi: 10.1269/jrr.40.145.

Single- and double-strand breaks in solid pBR322 DNA induced by ultrasoft X-rays at photon energies of 388, 435 and 573 eV

Affiliations
Free article

Single- and double-strand breaks in solid pBR322 DNA induced by ultrasoft X-rays at photon energies of 388, 435 and 573 eV

A Yokoya et al. J Radiat Res. 1999 Jun.
Free article

Abstract

We measured strand breaks of pBR322 plasmid DNA irradiated with ultrasoft X-rays using monochromatic synchrotron radiation as a light source. Three photon energies, 388, 435 and 573 eV, a value below and above the nitrogen K-edge and above the oxygen K-edge, respectively, were chosen for the irradiation experiments as they have an equivalent photon transmittance of the sample. Irradiated DNA was analyzed by agarose gel electrophoresis and the numbers of single- and double-strand breaks (ssb and dsb) were determined by measuring the band intensity on the gel after ethidium bromide staining. The action cross-sections for the ssb and dsb slightly increased with the photon energy. The ratio between 388 and 573 eV was about 1.5 for both forms of strand breaks. The absorbed energy required for a strand break was about 60 eV for ssb and 1 keV for dsb, less than one fifth of the values obtained previously in the 2 keV region. On the other hand, the absorbed energies per strand break, as well as the ratio of the action cross-section for the ssb to that for the dsb, were constant regardless of the photon energy used. The K-shell photoabsorption on carbon, nitrogen and oxygen atoms in the DNA molecule, followed by an Auger cascade, induced DNA strand breaks with a constant efficiency in terms of the absorbed energy. These results indicate that the strand breaks of the DNA molecule in the solid state are mainly caused by the photo- and Auger-electrons and the efficiency of the strand breaks little depends on the atoms ejecting these secondary electrons.

PubMed Disclaimer

Similar articles

Cited by