Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr;8(4):530-4.
doi: 10.1681/ASN.V84530.

Inhibition of IMCD 11 beta-hydroxysteroid dehydrogenase type 2 by low pH and acute acid loading

Affiliations

Inhibition of IMCD 11 beta-hydroxysteroid dehydrogenase type 2 by low pH and acute acid loading

P J Nolan et al. J Am Soc Nephrol. 1997 Apr.

Abstract

Mineralocorticoid receptors in the inner medullary collecting duct (IMCD) are protected from glucocorticoid binding by an enzyme, 11 beta-hydroxysteroid dehydrogenase type 2 (11 beta-HSD2). To study the role of 11 beta-HSD2 in acid-base homeostasis, 11 beta-HSD2 activity was measured in rat IMCD-enriched cell suspensions. Homogenates of cell suspensions were incubated in buffers ranging in pH from 6.00 to 8.15 in the presence of 1 microCi of 3H-corticosterone (CS) and 400 microM NAD+. Enzyme activity was expressed as the amount of 3H-CS converted to 3H-11-dehydrocorticosterone (DHCS). IMCD 11 beta-HSD2 activity at pH 6.5 was 49% of activity at pH 7.5; 22.5 versus 11.0 fmol/microgram of protein per h. Experiments also were performed on intact cell suspensions at pH 7.5 and 6.5. There was a 42% inhibition in the IMCD cell suspension conversion rate of 3H-CS to 3H-11-DHCS at pH 6.5; 13.1 versus 7.6 fmol/microgram per h (P < 0.005). In cell suspensions at pH 7.5, 1-day acid loading caused a 26% inhibition in conversion rate, 13.2 versus 9.9 fmol/microgram per h (P < 0.05), when compared with controls. These results suggest that during acute metabolic acidosis, IMCD 11 beta-HSD2 is inhibited and may allow access to the mineralocorticoid receptors by glucocorticoids.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources