Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct;140(10):4706-12.
doi: 10.1210/endo.140.10.7025.

An insulinotropic effect of vitamin D analog with increasing intracellular Ca2+ concentration in pancreatic beta-cells through nongenomic signal transduction

Affiliations

An insulinotropic effect of vitamin D analog with increasing intracellular Ca2+ concentration in pancreatic beta-cells through nongenomic signal transduction

M Kajikawa et al. Endocrinology. 1999 Oct.

Abstract

The effect of 1alpha,25-dihydroxylumisterol3 (1alpha,25(OH)2lumisterol3) on insulin release from rat pancreatic beta-cells was measured to investigate the nongenomic action of vitamin D via the putative membrane vitamin D receptor (mVDR). 1Alpha,25(OH)2lumisterol3, a specific agonist of mVDR, dose-dependently augmented 16.7 mM glucose-induced insulin release from rat pancreatic islets and increased the intracellular Ca2+ concentration ([Ca2+]i), though not increasing Ca2+ efficacy in the exocytotic system. These effects were completely abolished by an antagonist of mVDR, 1beta,25-dihydroxyvitamin D3 (1beta,25(OH)2D3), or by a blocker of voltage-dependent Ca2+ channels, nitrendipine. Moreover, both [Ca2+]i elevation, caused by membrane depolarization, and sufficient intracellular glucose metabolism are required for the expression of these effects. 1Alpha,25(OH)2lumisterol3, therefore, has a rapid insulinotropic effect, through nongenomic signal transduction via mVDR, that would be dependent on the augmentation of Ca2+ influx through voltage-dependent Ca2+ channels on the plasma membrane, being also linked to metabolic signals derived from glucose in pancreatic beta-cells. However, further investigations will be needed to discuss physiologically the meaning of insulinotropic effects of vitamin D through mVDR.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms