Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep 16;401(6750):301-4.
doi: 10.1038/45843.

The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites

Affiliations

The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites

B Hendrich et al. Nature. .

Erratum in

  • Nature 2000 Mar 30;404(6777):525

Abstract

In addition to its well-documented effects on gene silencing, cytosine methylation is a prominent cause of mutations. In humans, the mutation rate from 5-methylcytosine (m5C) to thymine (T) is 10-50-fold higher than other transitions and the methylated sequence CpG is consequently under-represented. Over one-third of germline point mutations associated with human genetic disease and many somatic mutations leading to cancer involve loss of CpG. The primary cause of mutability appears to be hydrolytic deamination. Cytosine deamination produces mismatched uracil (U), which can be removed by uracil glycosylase, whereas m5C deamination generates a G x T mispair that cannot be processed by this enzyme. Correction of m5CpG x TpG mismatches may instead be initiated by the thymine DNA glycosylase, TDG. Here we show that MBD4, an unrelated mammalian protein that contains a methyl-CpG binding domain, can also efficiently remove thymine or uracil from a mismatches CpG site in vitro. Furthermore, the methyl-CpG binding domain of MBD4 binds preferentially to m5CpG x TpG mismatches-the primary product of deamination at methyl-CpG. The combined specificities of binding and catalysis indicate that this enzyme may function to minimize mutation at methyl-CpG.

PubMed Disclaimer

Publication types

LinkOut - more resources