Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999;65(11):1153-61.
doi: 10.1016/s0024-3205(99)00349-5.

As human pial arteries (internal diameter 200-1000 microm) get smaller, their wall thickness and capacity to develop tension relative to their diameter increase

Affiliations

As human pial arteries (internal diameter 200-1000 microm) get smaller, their wall thickness and capacity to develop tension relative to their diameter increase

J A Bevan et al. Life Sci. 1999.

Abstract

Pial arteries play a key role in the regulation of human cerebral blood flow. However, many of the features and mechanisms that regulate the tone and diameters of these vessels cannot be studied in situ. One approach is to study in vitro segments of arteries obtained during neurosurgical procedures. The ratios of arterial media thickness to lumen diameter and of the capacity to develop wall force to lumen diameter have important functional consequences and are known to change in disease. Experiments were carried out on pial arteries from normotensive humans to determine the way in which these parameters vary with vessel size. Vessel dimensions--media thickness and lumen diameter were derived from fixed sections using quantitative morphometry. Wall force was measured using a resistance artery myograph. The ratio of media thickness to lumen diameter and of maximum tension developed to lumen diameter both increased as vessel diameter decreased. These ratios do not change over the age range of 15-75 years. These findings show that although in vivo intralumenal pressure falls as human pial arteries become smaller, their media thickness and capacity to develop tone increase.

PubMed Disclaimer

LinkOut - more resources