Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Oct;118(4):681-91.
doi: 10.1016/S0022-5223(99)70014-0.

Bidirectional superior cavopulmonary anastomosis improves mechanical efficiency in dilated atriopulmonary connections

Affiliations
Free article
Comparative Study

Bidirectional superior cavopulmonary anastomosis improves mechanical efficiency in dilated atriopulmonary connections

A C Lardo et al. J Thorac Cardiovasc Surg. 1999 Oct.
Free article

Abstract

Objective: Few therapeutic options exist for patients with failing dilated atriopulmonary connections. We addressed the hypothesis that a bidirectional superior cavopulmonary anastomosis will improve the hemodynamic efficiency of dilated atriopulmonary connections while maintaining physiologic pulmonary flow distributions.

Methods: Dilated atriopulmonary connections with and without a bidirectional superior cavopulmonary anastomosis were created in explanted sheep heart preparations and transparent glass models. A mechanical energy balance and flow visualization were performed for 6 flow rates (1-6 L/min), both with and without the bidirectional superior cavopulmonary anastomosis, and were then compared. A novel contrast echocardiographic technique was used to quantify inferior vena cava flow (hepatic venous return) distributions into the pulmonary arteries.

Results: The rate of fluid-energy dissipation was 52% +/- 14% greater in the dilated atriopulmonary anastomosis than in the bidirectional superior cavopulmonary anastomosis model over the range of flow rates studied (P = 6.3E(-3)). Total venous return passing to the right pulmonary artery increased from 41% +/- 2% to 47% +/- 3% (P = 9.7E(-3)) and that for inferior vena cava flow decreased from and 42% +/- 3% to 12% +/- 4% (P = 3.3E(-4)) after addition of the bidirectional superior cavopulmonary anastomosis. Flow visualization confirmed more ordered atrial flow in the bidirectional cavopulmonary anastomosis model, resulting from a reduction of caval flow stream collision and interaction.

Conclusions: A bidirectional cavopulmonary anastomosis reduces fluid-energy dissipation in atriopulmonary connections, provides a physiologic distribution of total flow, and maintains some hepatic venous flow to each lung. This approach may be a technically simple alternative to atriopulmonary takedown procedures and conversions to total cavopulmonary connections in selected patients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources