Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct 1;273(2):85-8.
doi: 10.1016/s0304-3940(99)00627-8.

The antinociceptive effect of venlafaxine in mice is mediated through opioid and adrenergic mechanisms

Affiliations

The antinociceptive effect of venlafaxine in mice is mediated through opioid and adrenergic mechanisms

S Schreiber et al. Neurosci Lett. .

Abstract

The antinociceptive effects of the novel phentylethylamine antidepressant drug venlafaxine and its interaction with various opioid, noradrenaline and serotonin receptor subtypes were evaluated. When mice were tested with a hotplate analgesia meter, venlafaxine induced a dose-dependent antinociceptive effect following i.p. administration with an ED50 of 46.7 mg/kg (20.5; 146.5; 95% CL). Opioid, adrenergic and serotoninergic receptor antagonists were tested for their ability to block venlafaxine antinociception. Venlafaxine-induced antinociception was significantly inhibited by naloxone, nor-BNI and naltrindole but not by beta-FNA or naloxonazine, implying involvement of kappa1- and delta-opioid mechanisms. When adrenergic and serotoninergic antagonists were used, yohimbine (P < 0.005) but not phentolamine or metergoline, decreased antinociception elicited by venlafaxine, implying a clear alpha2- and a minor alpha1-adrenergic mechanism of antinociception. When venlafaxine was administered together with various agonists of the opioid and alpha2- receptor subtypes, it significantly potentiated antinociception mediated by kappa1- kappa3- and delta-opioid receptor subtypes. The alpha2-adrenergic agonist clonidine significantly potentiated venlafaxine-mediated antinociception. Summing up these results, we conclude that the antinociceptive effect of venlafaxine is mainly influenced by the kappa- and delta-opioid receptor subtypes combined with the alpha2-adrenergic receptor. These results suggest a potential use of venlafaxine in the management of some pain syndromes. However, further research is needed in order to establish both the exact clinical indications and the effective doses of venlafaxine when prescribed for pain.

PubMed Disclaimer

MeSH terms

LinkOut - more resources