Interiors of giant planets inside and outside the solar system
- PMID: 10506563
- DOI: 10.1126/science.286.5437.72
Interiors of giant planets inside and outside the solar system
Abstract
An understanding of the structure and composition of the giant planets is rapidly evolving because of (i) high-pressure experiments with the ability to study metallic hydrogen and define the properties of its equation of state and (ii) spectroscopic and in situ measurements made by telescopes and satellites that allow an accurate determination of the chemical composition of the deep atmospheres of the giant planets. However, the total amount of heavy elements that Jupiter, Saturn, Uranus, and Neptune contain remains poorly constrained. The discovery of extrasolar giant planets with masses ranging from that of Saturn to a few times the mass of Jupiter opens up new possibilities for understanding planet composition and formation. Evolutionary models predict that gaseous extrasolar giant planets should have a variety of atmospheric temperatures and chemical compositions, but the radii are estimated to be close to that of Jupiter (between 0.9 and 1.7 Jupiter radii), provided that they contain mostly hydrogen and helium.
Similar articles
-
Condensation of methane, ammonia, and water and the inhibition of convection in giant planets.Science. 1995 Sep 22;269(5231):1697-9. doi: 10.1126/science.7569896. Science. 1995. PMID: 7569896
-
Looking for planetary moons in the spectra of distant Jupiters.Astrobiology. 2004 Fall;4(3):400-3. doi: 10.1089/ast.2004.4.400. Astrobiology. 2004. PMID: 15383243
-
[Extrasolar terrestrial planets and possibility of extraterrestrial life].Biol Sci Space. 2003 Dec;17(4):318-23. doi: 10.2187/bss.17.318. Biol Sci Space. 2003. PMID: 15136756 Review. Japanese.
-
The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System.Nature. 1999 Dec 9;402(6762):635-8. doi: 10.1038/45185. Nature. 1999. PMID: 10604469
-
M stars as targets for terrestrial exoplanet searches and biosignature detection.Astrobiology. 2007 Feb;7(1):85-166. doi: 10.1089/ast.2006.0125. Astrobiology. 2007. PMID: 17407405 Review.
Cited by
-
Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements.Nat Commun. 2021 Mar 30;12(1):1958. doi: 10.1038/s41467-021-22182-4. Nat Commun. 2021. PMID: 33785748 Free PMC article.
-
The Matter in Extreme Conditions instrument at the Linac Coherent Light Source.J Synchrotron Radiat. 2015 May;22(3):520-5. doi: 10.1107/S1600577515004865. Epub 2015 Apr 21. J Synchrotron Radiat. 2015. PMID: 25931063 Free PMC article.
-
Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory.Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1204-8. doi: 10.1073/pnas.0510489103. Epub 2006 Jan 23. Proc Natl Acad Sci U S A. 2006. PMID: 16432191 Free PMC article.
-
Fast nonadiabatic dynamics of many-body quantum systems.Sci Adv. 2019 Nov 22;5(11):eaaw1634. doi: 10.1126/sciadv.aaw1634. eCollection 2019 Nov. Sci Adv. 2019. PMID: 31803829 Free PMC article.
-
Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressures.Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1252-5. doi: 10.1073/pnas.1013594108. Epub 2011 Jan 5. Proc Natl Acad Sci U S A. 2011. PMID: 21209327 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources