Acute cellular rejection of human renal tissue by adoptive transfer of allogeneic human peripheral blood mononuclear cells into chimeric rats: sequential gene expression of cytokines, chemokines and cytolytic effector molecules, and their regulation by CTLA-4-Ig
- PMID: 10508185
- DOI: 10.1093/intimm/11.10.1673
Acute cellular rejection of human renal tissue by adoptive transfer of allogeneic human peripheral blood mononuclear cells into chimeric rats: sequential gene expression of cytokines, chemokines and cytolytic effector molecules, and their regulation by CTLA-4-Ig
Abstract
T(h)1- and T(h)2-related cytokines (IFN-gamma, IL-2, IL-4, IL-10), beta-chemokines (RANTES, macrophage inflammatory protein-1beta) and their receptor [chemotatic cytokine receptor (CCR) 5], and the cytolytic effector molecule [Fas ligand (FasL)] play an essential role in regulating and co-ordinating acute renal allograft rejection. A chimeric model of acute cellular rejection which involves subcapsular grafting of human renal tissue in the kidneys of immunodeficient rats and subsequent i.p. infusion of allogeneic human peripheral blood mononuclear cells (PBMC) was used to study cellular infiltration patterns and sequential intragraft gene expression of these key inflammatory mediators. We found that while all molecules are expressed within the human renal implant at specific time points following infusion of allogeneic human PBMC, peak mRNA expression of IFN-gamma, IL-2, RANTES and CCR5 is associated with a phase of human mononuclear infiltration and accumulation, prior to graft destruction (induction phase). A short burst of FasL gene expression is found at the end of induction and at the onset of graft deterioration. IL-4 mRNA, which is hardly detectable, and IL-10 mRNA, which appears early and persists throughout follow-up at high levels, both peak after the induction phase with the advent of graft destruction. Furthermore, treatment with CTLA-4-Ig, which hardly affects migration of human effector cells into graft tissue, is associated with a temporary reduction in gene transcript levels for all inflammatory mediators, especially IL-2 and IL-4, reduced apoptosis in the graft and amelioration of tissue injury. Thus, development of acute cellular rejection in our chimeric model involves a co-ordinated pattern of gene expression, in which CTLA-4-Ig promotes its effects by transient inactivation of infiltrating human cells.
Similar articles
-
In vivo modulation of the allogeneic immune response by human fetal kidneys: the role of cytokines, chemokines, and cytolytic effector molecules.Transplantation. 2000 Apr 15;69(7):1470-8. doi: 10.1097/00007890-200004150-00044. Transplantation. 2000. PMID: 10798773
-
Engraftment of human kidney tissue in rat radiation chimera: I. A new model of human kidney allograft rejection.Transplantation. 1997 Dec 15;64(11):1541-50. doi: 10.1097/00007890-199712150-00007. Transplantation. 1997. PMID: 9415554
-
CD28 blockade alters cytokine mRNA profiles in cardiac transplantation.Surgery. 1997 Aug;122(2):129-37. doi: 10.1016/s0039-6060(97)90001-5. Surgery. 1997. PMID: 9288115
-
The role of cytokines, CTLA-4 and costimulation in transplant tolerance and rejection.Curr Opin Immunol. 1999 Oct;11(5):504-8. doi: 10.1016/s0952-7915(99)00008-4. Curr Opin Immunol. 1999. PMID: 10508707 Review.
-
Are Th2 helper T lymphocytes beneficial, deleterious, or irrelevant in promoting allograft survival?Transplantation. 1997 Mar 15;63(5):619-24. doi: 10.1097/00007890-199703150-00001. Transplantation. 1997. PMID: 9075827 Review. No abstract available.
Cited by
-
Large animal models for translational research in acute kidney injury.Ren Fail. 2020 Nov;42(1):1042-1058. doi: 10.1080/0886022X.2020.1830108. Ren Fail. 2020. PMID: 33043785 Free PMC article. Review.
-
Blocking Fas ligand on leukocytes attenuates kidney ischemia-reperfusion injury.J Am Soc Nephrol. 2011 Apr;22(4):732-42. doi: 10.1681/ASN.2010010121. Epub 2011 Mar 24. J Am Soc Nephrol. 2011. PMID: 21436290 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous