Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Sep 15;7(9):1067-78.
doi: 10.1016/s0969-2126(99)80174-9.

Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue

Affiliations
Free article

Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue

A D Cameron et al. Structure. .
Free article

Abstract

Background: Glyoxalase II, the second of two enzymes in the glyoxalase system, is a thiolesterase that catalyses the hydrolysis of S-D-lactoylglutathione to form glutathione and D-lactic acid.

Results: The structure of human glyoxalase II was solved initially by single isomorphous replacement with anomalous scattering and refined at a resolution of 1.9 A. The enzyme consists of two domains. The first domain folds into a four-layered beta sandwich, similar to that seen in the metallo-beta-lactamases. The second domain is predominantly alpha-helical. The active site contains a binuclear zinc-binding site and a substrate-binding site extending over the domain interface. The model contains acetate and cacodylate in the active site. A second complex was derived from crystals soaked in a solution containing the slow substrate, S-(N-hydroxy-N-bromophenylcarbamoyl)glutathione. This complex was refined at a resolution of 1.45 A. It contains the added ligand in one molecule of the asymmetric unit and glutathione in the other.

Conclusions: The arrangement of ligands around the zinc ions includes a water molecule, presumably in the form of a hydroxide ion, coordinated to both metal ions. This hydroxide ion is situated 2.9 A from the carbonyl carbon of the substrate in such a position that it could act as the nucleophile during catalysis. The reaction mechanism may also have implications for the action of metallo-beta-lactamases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources