Appearance and properties of L-sorbose-utilizing mutants of Candida albicans obtained on a selective plate
- PMID: 10511546
- PMCID: PMC1460764
- DOI: 10.1093/genetics/153.2.653
Appearance and properties of L-sorbose-utilizing mutants of Candida albicans obtained on a selective plate
Abstract
This is the first report that adaptive mutagenesis can arise by chromosomal nondisjunction, a phenomenon previously associated exclusively with DNA alterations. We previously uncovered a novel regulatory mechanism in Candida albicans in which the assimilation of an alternative sugar, l-sorbose, was determined by copy number of chromosome 5, such that monosomic strains utilized l-sorbose, whereas disomic strains did not. We present evidence that this formation of monosomy of chromosome 5, which is apparently a result of nondisjunction, appeared with increased frequencies after a selective condition was applied, i.e., by adaptive mutagenesis. The rate of formation of l-sorbose-utilizing mutants per viable cell per day ranged from 10(-6) at the initial time of detection to 10(-2) after 4 days of incubation on the selective plate.
Similar articles
-
Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans.Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5150-5. doi: 10.1073/pnas.95.9.5150. Proc Natl Acad Sci U S A. 1998. PMID: 9560244 Free PMC article.
-
Loss and gain of chromosome 5 controls growth of Candida albicans on sorbose due to dispersed redundant negative regulators.Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12147-52. doi: 10.1073/pnas.0505625102. Epub 2005 Aug 11. Proc Natl Acad Sci U S A. 2005. PMID: 16099828 Free PMC article.
-
An evaluation of the role of LIG4 in genomic instability and adaptive mutagenesis in Candida albicans.FEMS Yeast Res. 2002 Aug;2(3):341-8. doi: 10.1016/S1567-1356(02)00094-6. FEMS Yeast Res. 2002. PMID: 12702284
-
Chromosome instability in Candida albicans.FEMS Yeast Res. 2007 Jan;7(1):2-11. doi: 10.1111/j.1567-1364.2006.00150.x. FEMS Yeast Res. 2007. PMID: 17311580 Review.
-
[Genomic analysis in Candida albicans].Nihon Ishinkin Gakkai Zasshi. 2003;44(2):81-5. doi: 10.3314/jjmm.44.81. Nihon Ishinkin Gakkai Zasshi. 2003. PMID: 12748588 Review. Japanese.
Cited by
-
Plasticity of Candida albicans Biofilms.Microbiol Mol Biol Rev. 2016 Jun 1;80(3):565-95. doi: 10.1128/MMBR.00068-15. Print 2016 Sep. Microbiol Mol Biol Rev. 2016. PMID: 27250770 Free PMC article. Review.
-
The Impact of Gene Dosage and Heterozygosity on The Diploid Pathobiont Candida albicans.J Fungi (Basel). 2019 Dec 27;6(1):10. doi: 10.3390/jof6010010. J Fungi (Basel). 2019. PMID: 31892130 Free PMC article. Review.
-
Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique.Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11374-9. doi: 10.1073/pnas.0404318101. Epub 2004 Jul 22. Proc Natl Acad Sci U S A. 2004. PMID: 15272074 Free PMC article.
-
Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome.mBio. 2016 Oct 11;7(5):e01109-16. doi: 10.1128/mBio.01109-16. mBio. 2016. PMID: 27729506 Free PMC article.
-
Rapid and extensive karyotype diversification in haploid clinical Candida auris isolates.Curr Genet. 2019 Oct;65(5):1217-1228. doi: 10.1007/s00294-019-00976-w. Epub 2019 Apr 24. Curr Genet. 2019. PMID: 31020384 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources