Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978;74(4):427-38.

Muscle responses and monosynaptic reflexes in falling monkey. Role of the vestibular system

  • PMID: 105128

Muscle responses and monosynaptic reflexes in falling monkey. Role of the vestibular system

M Lacour et al. J Physiol (Paris). 1978.

Abstract

The free fall has been used in our laboratory as a way to test vestibular function in baboons in order to quantify vestibular compensation in the hemilabyrinthectomized animal. This study presents only those results that concern the contribution of the vestibular system to muscle responses due to sudden fall. EMG activity was recorded from the fully conscious animal using chronic electrodes implanted in various muscles. Spinal monosynaptic reflexes (Hoffmann's and tendon reflexes) were studied in the soleus muscle. Baboons were seated in a special chair suspended from an electromagnet and unexpectedly dropped 90 cm. Experiments were performed in normal, unilateral and bilateral vestibular neurectomized baboons. 1. In normal baboons, results showed a first short-latency response in all tested muscles, followed by a second peak of EMG activity in these muscles. Comparison with data from bilateral vestibular neurectomized baboons demonstrates that normal vestibular function is essential for the appearance of the first peak; the second peak rapidly disappears in our experimental situation where the animal's fall is mechanically braked and interrupted, so the animal does not have to make the postural adjustments necessary for landing, It is suggested that the first peak is concerned with the automatic and reflex control of landing, the second with the voluntary breaking of landing. 2. The modulation of monosynaptic spinal reflexes is closely related to the EMG response in soleus muscle. Facilitation of the H-reflex begins just prior to the onset of the EMG activity and continues as long as the baboon is falling. The T-reflex modulation presents a similar time course except in its early phase where it is depressed. Decrease in T and increase in H-reflexes suggest that the EMG response is most likely due to direct activation of alpha-motoneurons and not by means of the gamma-loop. 3. In unilateral vestibular neurectomized baboons, EMG and reflexological data show the classical asymmetry characterized by a strong decrease of the responses on the side of the lesion, and by a pronounced increase on the contralateral side. It is concluded that this represents the imbalance between the resting discharge of the vestibular neurons, and discloses the influence of labyrinthine afferences at the spinal level. We suggest consequently the use of EMG responses and modulation of spinal reflexes to fall in order to quantify vestibular compensation.

PubMed Disclaimer

Similar articles

Cited by