Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct 15;274(42):30315-21.
doi: 10.1074/jbc.274.42.30315.

Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation

Affiliations
Free article

Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation

F Galbiati et al. J Biol Chem. .
Free article

Abstract

Caveolin-3 is the principal structural protein of caveolae membrane domains in striated muscle cells. Caveolin-3 mRNA and protein expression are dramatically induced during the differentiation of C2C12 skeletal myoblasts, coincident with myoblast fusion. In these myotubes, caveolin-3 localizes to the sarcolemma (muscle cell plasma membrane), where it associates with the dystrophin-glycoprotein complex. However, it remains unknown what role caveolin-3 plays in myoblast differentiation and myotube formation. Here, we employ an antisense approach to derive stable C2C12 myoblasts that fail to express the caveolin-3 protein. We show that C2C12 cells harboring caveolin-3 antisense undergo differentiation and express normal amounts of four muscle-specific marker proteins. However, C2C12 cells harboring caveolin-3 antisense fail to undergo myoblast fusion and, therefore, do not form myotubes. Interestingly, treatment with specific p38 mitogen-activated protein kinase inhibitors blocks both myotube formation and caveolin-3 expression, but does not affect the expression of other muscle-specific proteins. In addition, we find that three human rhabdomyosarcoma cell lines do not express caveolin-3 and fail to undergo myoblast fusion. Taken together, these results support the idea that caveolin-3 expression is required for myoblast fusion and myotube formation, and suggest that p38 is an upstream regulator of caveolin-3 expression.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources